MATH 2050 C Lecture 14 (Mar 4)

Problem Set 7 posted, due on Mar 16.]

Reminder: Take-home midtern (open book, notes)

Time: Mar 11. 2021 6 PM - Mar 12, 2021 6 PM

Covers: From Lecture 1 - 13 (ie. up to § 3.4 of the textbook, inclusive)

(anchy sequences (§ 3.5 in textbook)

 $Q: \text{ When is } (X_n) \text{ convergent (without knowing its limit)?}$ $\underline{A1}: \text{``McT''} \text{ bdd + monotone } \text{ convergent}$ $BuT \quad \overset{'}{\mathsf{K}}=\text{``is FALSE} \quad \underline{F.s.} \quad (x_n) = \left(\frac{(-1)^n}{n}\right) \rightarrow 0$ $\underline{A2}: \text{``Cauchy''} \quad \overset{'}{\mathsf{K}}=\text{``convergent}$ $\underbrace{\text{Iff}}$

 $\frac{\text{Def}^{\underline{M}}}{\text{Pef}^{\underline{M}}}; \text{ A seq. (Xn) is called Cauchy if} \\ \forall \mathbf{E} > \mathbf{0}, \exists \mathbf{H} = \mathbf{H}(\mathbf{E}) \in \mathbb{N} \text{ s.t.} \\ | Xn - Xm | < \mathbf{E} \quad \forall n, m \ge \mathbf{H}. \end{cases}$

Remark: Compared to the $\Sigma - K$ def" for convergence of (In), we DO NOT need to refer the potential limit X.

Example 1:
$$(X_n) := (\frac{1}{n})$$
 is Cauchy. (Also $(\frac{1}{n}) \rightarrow 0$)
Pf: Let $\varepsilon > 0$ be fixed but arbitreng.
(hoose $H \in IN$ st: $H \gg \frac{2}{\varepsilon}$.
Then, $\forall n, m \geqslant H$,
 $|X_n - X_m| = |\frac{1}{n} - \frac{1}{m}| \le \frac{1}{n} + \frac{1}{m} \le \frac{1}{H} + \frac{1}{H} = \frac{2}{H} < \varepsilon$
Example 2: $(X_n) := (1 + (-1)^n)$ is NOT Cauchy
Pf: $n \text{ odd} : X_n = 1 - 1 = 0$
 $n \text{ even} : X_n = 1 + 1 = 2$
 $M \text{ even} : X_n = 1 + 1 = 2$
 $1 \text{ odd} m \geqslant H$
 $\exists \text{ odd} m \geqslant H$
 $\exists \text{ odd} m \geqslant H$
 $\exists \text{ even} n \geqslant H$
 $nec \land \text{ suff. condition}$
 $nec \land \text{ suff. condition}$
 $next (X_n) \text{ convergent } \leq 2 \text{ (X_n)} = X$.
By de_1^2 , let $\varepsilon > 0$ be given, then $\exists K = K(\frac{\varepsilon}{2}) \in IN$ st.
 $|X_n - X_n| \le |X_m - X| + |X_n - X_n| = K$.
 $|X_m - X_n| \le |X_m - X| + |X_n - X_n| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
So, (X_n) is Cauchy.
 $X_m = X_n| \le (X_m - X + |X_m - X| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
So, (X_n) is Cauchy.

"<=" Assume (Xn) is Cauchy.

Claim 1: (Xn) is bdd Pf of Claim: Since (Xn) is Cauchy, take E. = 1 > 0. then 3 H=H(1)EN st. Yn,m > H, $|x_n - x_m| < \frac{1}{2} = \varepsilon_0$ Fix M = H, then by reverse D-ineq and the above. $|X_n| \leq |X_H| + 1$ $\forall n > H$ シ Take M = max [|x,1,..., |x_{H-1}|, |x_{H}|+1] Then, IxnI < M, YNEIN, ie (xn) is bold. (laim Z: (Xn) is convergent potential Candidate the one limit Pf of Claim: Since (Xn) is bold by Claim 1, "BWT" \Rightarrow \exists convergent subseq. $(Xn_k) \rightarrow X \in \mathbb{R}$. Want to show: (Xn) -> X By Cauchy def", let 2 >0 be fixed but arbitrary. then $\exists H = H(\frac{\xi}{2}) \in \mathbb{N}$ st. $|X_m - X_n| < \frac{\varepsilon}{2} \qquad \forall n.m.; H \qquad (*)$ Since the subseq. (Xnk) -> x as k +00, by def?

 $\exists K = K(\frac{\xi}{2}) \in \mathbb{N}$ st

 $|\chi_{n_k} - \chi| < \frac{\varepsilon}{2}$ $\forall k \geqslant K - (**)$

Fix a
$$k \ge K$$
 st $n_k \ge H$.
Then, $\forall n \ge H$, we have
 $|\chi_n - \chi| \le |\chi_n - \chi_{n_k}| + |\chi_{n_k} - \chi| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
(*)